The Random Schrödinger Equation: Homogenization in Time-Dependent Potentials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Random Schrödinger Equation: Homogenization in Time-Dependent Potentials

We analyze the solutions of the Schrödinger equation with the low frequency initial data and a time-dependent weakly random potential. We prove a homogenization result for the low frequency component of the wave field. We also show that the dynamics generates a non-trivial energy in the high frequencies, which do not homogenize – the high frequency component of the wave field remains random and...

متن کامل

The random Schrödinger equation: slowly decorrelating time-dependent potentials

We analyze the weak-coupling limit of the random Schrödinger equation with low frequency initial data and a slowly decorrelating random potential. For the probing signal with a sufficiently long wavelength, we prove a homogenization result, that is, the properly compensated wave field admits a deterministic limit in the “very low” frequency regime. The limit is “anomalous” in the sense that the...

متن کامل

Multiresolution scheme for Time-Dependent Schrödinger Equation

Article history: Received 3 November 2009 Accepted 21 November 2009 Available online xxxx

متن کامل

Mathematical modeling : control of the Time Dependent Schrödinger Equation

81Q05 Synonyms or related entries control of quantum dynamics by electromagnetic radiation; laser control of chemical reactions; control of spin systems; control in Nuclear Magnetic Resonance; construction of logic gates for quantum computers Definition Quantum control is the control, at the quantum level, of the state or dynamical evolution of some quantum system by means of electromagnetic ra...

متن کامل

Solution of the Time-dependent Schrödinger Equation Using Interpolating Wavelets

An adaptive numerical method for solution of the time-dependent Schrödinger equation is presented. By using an interpolating wavelet transform the number of used points can be reduced, constructing an adaptive sparse point representation. Two di erent discretisation approaches are studied in 1D ; one point-based and one based on equidistant blocks. Due to the nature of the wavelet transform a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multiscale Modeling & Simulation

سال: 2016

ISSN: 1540-3459,1540-3467

DOI: 10.1137/15m1024986